Home The Word Brain My Amedeo FAQ Privacy About   


2049 Chinese

The 20K Word Road to Mandarin Proficiency

By B. S. Kamps et al.


  Neurosurgery

  Free Subscription


Articles published in Exp Neurol

Retrieve available abstracts of 113 articles:
HTML format



Single Articles


    March 2024
  1. MALLOY DC, Cote MP
    Multi-session transcutaneous spinal cord stimulation prevents chloride homeostasis imbalance and the development of hyperreflexia after spinal cord injury in rat.
    Exp Neurol. 2024 Mar 15:114754. doi: 10.1016/j.expneurol.2024.114754.
    PubMed     Abstract available


  2. SUN C, Rahman MSU, Enkhjargal B, Peng J, et al
    Corrigendum to 'Osteopontin modulates microglial activation states and attenuates inflammatory responses after subarachnoid hemorrhage in rats' [Experimental Neurology 371 (2024) 114585].
    Exp Neurol. 2024 Mar 6:114747. doi: 10.1016/j.expneurol.2024.114747.
    PubMed    


  3. DEMYANENKO SV, Kalyuzhnaya YN, Bachurin SS, Khaitin AM, et al
    Exogenous Hsp70 exerts neuroprotective effects in peripheral nerve rupture model.
    Exp Neurol. 2024;373:114670.
    PubMed     Abstract available


    February 2024
  4. MIAO X, Lin J, Li A, Gao T, et al
    AAV-mediated VEGFA overexpression promotes angiogenesis and recovery of locomotor function following spinal cord injury via PI3K/Akt signaling.
    Exp Neurol. 2024;375:114739.
    PubMed     Abstract available


  5. ALDRICH JC, Scheinfeld AR, Lee SE, Dusenbery KJ, et al
    Effects of dim light at night in C57BL/6 J mice on recovery after spinal cord injury.
    Exp Neurol. 2024;375:114725.
    PubMed     Abstract available


    January 2024
  6. WU Y, Xu Y, Sun J, Dai K, et al
    Inhibiting RIPK1-driven neuroinflammation and neuronal apoptosis mitigates brain injury following experimental subarachnoid hemorrhage.
    Exp Neurol. 2024;374:114705.
    PubMed     Abstract available


  7. LIU J, Qi L, Bao S, Yan F, et al
    The acute spinal cord injury microenvironment and its impact on the homing of mesenchymal stem cells.
    Exp Neurol. 2024 Jan 8:114682. doi: 10.1016/j.expneurol.2024.114682.
    PubMed     Abstract available


    December 2023
  8. MAH KM, Wu W, Al-Ali H, Sun Y, et al
    Corrigendum to "Compounds co-targeting kinases in axon regulatory pathways promote regeneration and behavioral recovery after spinal cord injury in mice" [Exp. Neurol. 355 (2022) 114117].
    Exp Neurol. 2023 Dec 26:114669. doi: 10.1016/j.expneurol.2023.114669.
    PubMed    


  9. BROWN BL, Anil N, States G, Whittemore SR, et al
    Long ascending propriospinal neurons are heterogenous and subject to spinal cord injury induced anatomic plasticity.
    Exp Neurol. 2023 Dec 7:114631. doi: 10.1016/j.expneurol.2023.114631.
    PubMed     Abstract available


    November 2023
  10. SEBLANI M, Ertlen C, Coyle T, Decherchi P, et al
    Combined effect of trifluoperazine and sodium cromoglycate on reducing acute edema and limiting lasting functional impairments after spinal cord injury in rats.
    Exp Neurol. 2023 Nov 20:114612. doi: 10.1016/j.expneurol.2023.114612.
    PubMed     Abstract available


    October 2023
  11. SUN C, Rahman MSU, Enkhjargal B, Peng J, et al
    Osteopontin modulates microglial activation states and attenuates inflammatory responses after subarachnoid hemorrhage in rats.
    Exp Neurol. 2023 Oct 24:114585. doi: 10.1016/j.expneurol.2023.114585.
    PubMed     Abstract available


  12. LEE JY, Park CS, Seo KJ, Kim IY, et al
    IL-6/JAK2/STAT3 axis mediates neuropathic pain by regulating astrocyte and microglia activation after spinal cord injury.
    Exp Neurol. 2023;370:114576.
    PubMed     Abstract available


  13. HUO J, Dong W, Xu J, Ma L, et al
    Role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in autophagy activation following subarachnoid hemorrhage.
    Exp Neurol. 2023 Oct 18:114577. doi: 10.1016/j.expneurol.2023.114577.
    PubMed     Abstract available


  14. YANG L, Gao X, Tian D, Yang W, et al
    Resolvin D2 activates anti-inflammatory microglia via restoring autophagy flux and alleviate neuropathic pain following spinal cord injury in rats.
    Exp Neurol. 2023 Oct 17:114573. doi: 10.1016/j.expneurol.2023.114573.
    PubMed     Abstract available


  15. SUN C, Deng J, Ma Y, Meng F, et al
    The dual role of microglia in neuropathic pain after spinal cord injury: Detrimental and protective effects.
    Exp Neurol. 2023 Oct 16:114570. doi: 10.1016/j.expneurol.2023.114570.
    PubMed     Abstract available


    September 2023
  16. METCALFE M, Steward O
    PTEN deletion in spinal pathways via retrograde transduction with AAV-RG enhances forelimb motor recovery after cervical spinal cord injury; Sex differences and late-onset pathophysiologies.
    Exp Neurol. 2023 Sep 29:114551. doi: 10.1016/j.expneurol.2023.114551.
    PubMed     Abstract available


  17. LIN X, Wang X, Zhang Y, Chu G, et al
    Synergistic effect of chemogenetic activation of corticospinal motoneurons and physical exercise in promoting functional recovery after spinal cord injury.
    Exp Neurol. 2023;370:114549.
    PubMed     Abstract available


    August 2023
  18. JIANG W, Zhang X, Yu S, Yan F, et al
    Decellularized extracellular matrix in the treatment of spinal cord injury.
    Exp Neurol. 2023 Aug 17:114506. doi: 10.1016/j.expneurol.2023.114506.
    PubMed     Abstract available


  19. ALONSO-CALVINO E, Fernandez-Lopez E, Zaforas M, Rosa JM, et al
    Increased excitability and reduced GABAergic levels in somatosensory cortex under chronic spinal cord injury.
    Exp Neurol. 2023 Aug 15:114504. doi: 10.1016/j.expneurol.2023.114504.
    PubMed     Abstract available


  20. STEWART AN, Kumari R, Bailey WM, Glaser EP, et al
    PTEN knockout using retrogradely transported AAVs transiently restores locomotor abilities in both acute and chronic spinal cord injury.
    Exp Neurol. 2023 Aug 7:114502. doi: 10.1016/j.expneurol.2023.114502.
    PubMed     Abstract available


    July 2023
  21. DANNER SM, Shepard CT, Hainline C, Shevtsova NA, et al
    Spinal control of locomotion before and after spinal cord injury.
    Exp Neurol. 2023 Jul 25:114496. doi: 10.1016/j.expneurol.2023.114496.
    PubMed     Abstract available


  22. LU E, Tang Y, Chen J, Al Mamun A, et al
    Stub1 ameliorates ER stress-induced neural cell apoptosis and promotes locomotor recovery through restoring autophagy flux after spinal cord injury.
    Exp Neurol. 2023 Jul 24:114495. doi: 10.1016/j.expneurol.2023.114495.
    PubMed     Abstract available


  23. SCHOLPA NE
    Role of DNA methylation during recovery from spinal cord injury with and without beta(2)-adrenergic receptor agonism.
    Exp Neurol. 2023 Jul 22:114494. doi: 10.1016/j.expneurol.2023.114494.
    PubMed     Abstract available


    June 2023
  24. AFSHARIPOUR B, Pearcey GEP, Rymer WZ, Sandhu MS, et al
    Acute intermittent hypoxia enhances strength, and modulates spatial distribution of muscle activation in persons with chronic incomplete spinal cord injury.
    Exp Neurol. 2023 Jun 2:114452. doi: 10.1016/j.expneurol.2023.114452.
    PubMed     Abstract available


    April 2023
  25. HE X, Guo X, Deng B, Kang J, et al
    Corrigendum to "HSPA1A ameliorated spinal cord injury in rats by inhibiting apoptosis to exert neuroprotective effects" [Experimental Neurology,Volume 361, March 2023, 114301].
    Exp Neurol. 2023 Apr 29:114419. doi: 10.1016/j.expneurol.2023.114419.
    PubMed    


  26. HUANG XX, Zhang QQ, Pang XX, Lin HB, et al
    Role of galectin-3 in cardiac dysfunction induced by subarachnoid hemorrhage.
    Exp Neurol. 2023 Apr 19:114418. doi: 10.1016/j.expneurol.2023.114418.
    PubMed     Abstract available


    March 2023
  27. LEE SE, Greenough EK, Fonken LK, Gaudet AD, et al
    Spinal cord injury in mice amplifies anxiety: A novel light-heat conflict test exposes increased salience of anxiety over heat.
    Exp Neurol. 2023 Mar 14:114382. doi: 10.1016/j.expneurol.2023.114382.
    PubMed     Abstract available


  28. THEO M, Aurelie B, Etienne G, Bertrand Sandrine S, et al
    Muscarinic cholinergic modulation of cardiovascular variables in spinal cord injured rats.
    Exp Neurol. 2023 Mar 4:114369. doi: 10.1016/j.expneurol.2023.114369.
    PubMed     Abstract available


    February 2023
  29. QUAN X, Yu C, Fan Z, Wu T, et al
    Hydralazine plays an immunomodulation role of pro-regeneration in a mouse model of spinal cord injury.
    Exp Neurol. 2023 Feb 27:114367. doi: 10.1016/j.expneurol.2023.114367.
    PubMed     Abstract available


  30. SZYMONIUK M, Mazurek M, Dryla A, Kamieniak P, et al
    The application of 3D-bioprinted scaffolds for neuronal regeneration after traumatic spinal cord injury - A systematic review of preclinical in vivo studies.
    Exp Neurol. 2023 Feb 27:114366. doi: 10.1016/j.expneurol.2023.114366.
    PubMed     Abstract available


  31. LIU C, Shan F, Gao F, Ji Q, et al
    DAP12 deletion causes age-related motor function impairment but promotes functional recovery after sciatic nerve crush injury.
    Exp Neurol. 2023;360:114296.
    PubMed     Abstract available


    December 2022
  32. HE X, Guo X, Deng B, Kang J, et al
    HSPA1A ameliorated spinal cord injury in rats by inhibiting apoptosis to exert neuroprotective effects.
    Exp Neurol. 2022 Dec 17:114301. doi: 10.1016/j.expneurol.2022.114301.
    PubMed     Abstract available


  33. ZHOU J, Guo P, Duan M, Li J, et al
    EphA4/EphrinB2 signaling mediates pericyte-induced transient glia limitans formation as a secondary protective barrier after subarachnoid hemorrhage in mice.
    Exp Neurol. 2022;360:114293.
    PubMed     Abstract available


    November 2022
  34. DE FRERIA CM, Graham L, Azimi A, Lu P, et al
    Adaptation of a cervical bilateral contusive spinal cord injury for study of skilled forelimb function.
    Exp Neurol. 2022 Nov 12:114275. doi: 10.1016/j.expneurol.2022.114275.
    PubMed     Abstract available


  35. XU J, Li P, Lu F, Chen Y, et al
    Domino reaction of neurovascular unit in neuropathic pain after spinal cord injury.
    Exp Neurol. 2022 Nov 11:114273. doi: 10.1016/j.expneurol.2022.114273.
    PubMed     Abstract available


  36. AHMED RU, Knibbe CA, Wilkins F, Sherwood LC, et al
    Porcine spinal cord injury model for translational research across multiple functional systems.
    Exp Neurol. 2022;359:114267.
    PubMed     Abstract available


  37. HUANG Z, Liu J, Xu J, Dai L, et al
    Downregulation of miR-26b attenuates early brain injury induced by subarachnoid hemorrhage via mediating the KLF4/STAT3/HMGB1 axis.
    Exp Neurol. 2022 Nov 5:114270. doi: 10.1016/j.expneurol.2022.114270.
    PubMed     Abstract available


  38. WANG P, Dong S, Liu F, Liu A, et al
    MicroRNA-140-5p shuttled by microglia-derived extracellular vesicles attenuates subarachnoid hemorrhage-induced microglia activation and inflammatory response via MMD downregulation.
    Exp Neurol. 2022 Nov 3:114265. doi: 10.1016/j.expneurol.2022.114265.
    PubMed     Abstract available


  39. TAMARU T, Kobayakawa K, Saiwai H, Konno D, et al
    Glial scar survives until the chronic phase by recruiting scar-forming astrocytes after spinal cord injury.
    Exp Neurol. 2022 Nov 3:114264. doi: 10.1016/j.expneurol.2022.114264.
    PubMed     Abstract available


  40. MESSINA DN, Peralta ED, Acosta CG
    Glial-derived neurotrophic factor regulates the expression of TREK2 in rat primary sensory neurons leading to attenuation of axotomy-induced neuropathic pain.
    Exp Neurol. 2022;357:114190.
    PubMed     Abstract available


  41. HUNYARA JL, Foshe S, Varadarajan SG, Gribble KD, et al
    Characterization of non-alpha retinal ganglion cell injury responses reveals a possible block to restoring ipRGC function.
    Exp Neurol. 2022;357:114176.
    PubMed     Abstract available


    October 2022
  42. LI Y, Tran A, Graham L, Brock J, et al
    BDNF guides neural stem cell-derived axons to ventral interneurons and motor neurons after spinal cord injury.
    Exp Neurol. 2022 Oct 26:114259. doi: 10.1016/j.expneurol.2022.114259.
    PubMed     Abstract available


  43. WANG C, Collins WF 3rd, Solomon IC
    Initiating daily acute intermittent hypoxia (dAIH) therapy at 1-week after contusion spinal cord injury (SCI) improves lower urinary tract function in rat.
    Exp Neurol. 2022 Oct 11:114242. doi: 10.1016/j.expneurol.2022.114242.
    PubMed     Abstract available


  44. FANG YP, Qin ZH, Zhang Y, Ning B, et al
    Implications of microglial heterogeneity in spinal cord injury progression and therapy.
    Exp Neurol. 2022;359:114239.
    PubMed     Abstract available


    September 2022
  45. CHEN P, Lin MH, Li YX, Huang ZJ, et al
    Bexarotene enhances astrocyte phagocytosis via ABCA1-mediated pathways in a mouse model of subarachnoid hemorrhage.
    Exp Neurol. 2022;358:114228.
    PubMed     Abstract available


    August 2022
  46. YANG C, He T, Wang Q, Wang G, et al
    Elevated intraspinal pressure drives edema progression after acute compression spinal cord injury in rabbits.
    Exp Neurol. 2022;357:114206.
    PubMed     Abstract available


  47. NORISTANI HN
    Intrinsic regulation of axon regeneration after spinal cord injury: Recent advances and remaining challenges.
    Exp Neurol. 2022;357:114198.
    PubMed     Abstract available


    July 2022
  48. SAMEJIMA S, Henderson R, Pradarelli J, Mondello SE, et al
    Activity-dependent plasticity and spinal cord stimulation for motor recovery following spinal cord injury.
    Exp Neurol. 2022 Jul 22:114178. doi: 10.1016/j.expneurol.2022.114178.
    PubMed     Abstract available


  49. TAO Q, Qiu X, Li C, Zhou J, et al
    S100A8 regulates autophagy-dependent ferroptosis in microglia after experimental subarachnoid hemorrhage.
    Exp Neurol. 2022 Jul 20:114171. doi: 10.1016/j.expneurol.2022.114171.
    PubMed     Abstract available


    June 2022
  50. SMITH GM, Steward O, Bradbury EJ
    Gene modification after spinal cord injury: Mechanisms and therapeutics.
    Exp Neurol. 2022;356:114156.
    PubMed    


  51. CHENG M, Liu L, Zhang T, Chen Y, et al
    Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neurological deficit and endothelial cell dysfunction after subarachnoid hemorrhage via the KLF3-AS1/miR-83-5p/TCF7L2 axis.
    Exp Neurol. 2022 Jun 20:114151. doi: 10.1016/j.expneurol.2022.114151.
    PubMed     Abstract available


  52. EBENEZER GJ, Pena MT, Daniel AS, Truman RW, et al
    Mycobacterium leprae induces Schwann cell proliferation and migration in a denervated milieu following intracutaneous excision axotomy in nine-banded armadillos.
    Exp Neurol. 2022;352:114053.
    PubMed     Abstract available


    May 2022
  53. ALEKSANDROWICZ M, Kozniewska E
    Hyponatremia as a risk factor for microvascular spasm following subarachnoid hemorrhage.
    Exp Neurol. 2022 May 30:114126. doi: 10.1016/j.expneurol.2022.114126.
    PubMed     Abstract available


  54. POLLET A
    A commentary on: Efficacy and time course of acute intermittent hypoxia effects in the upper extremities of people with cervical spinal cord injury.
    Exp Neurol. 2022 May 24:114123. doi: 10.1016/j.expneurol.2022.114123.
    PubMed    


  55. MAH KM, Wu W, Al-Ali H, Sun Y, et al
    Compounds co-targeting kinases in axon regulatory pathways promote regeneration and behavioral recovery after spinal cord injury in mice.
    Exp Neurol. 2022 May 16:114117. doi: 10.1016/j.expneurol.2022.114117.
    PubMed     Abstract available


  56. MADALENA KM, Brennan FH, Popovich PG
    Genetic deletion of the glucocorticoid receptor in Cx3cr1(+) myeloid cells is neuroprotective and improves motor recovery after spinal cord injury.
    Exp Neurol. 2022 May 11:114114. doi: 10.1016/j.expneurol.2022.114114.
    PubMed     Abstract available


  57. ISLAM A, Tom VJ
    The use of viral vectors to promote repair after spinal cord injury.
    Exp Neurol. 2022 May 2:114102. doi: 10.1016/j.expneurol.2022.114102.
    PubMed     Abstract available


    April 2022
  58. O'NEILL N, Mah KM, Badillo-Martinez A, Jann V, et al
    Markerless tracking enables distinction between strategic compensation and functional recovery after spinal cord injury.
    Exp Neurol. 2022 Apr 20:114085. doi: 10.1016/j.expneurol.2022.114085.
    PubMed     Abstract available


    March 2022
  59. ZHANG Y, Zhang T, Li Y, Guo Y, et al
    Metformin attenuates early brain injury after subarachnoid hemorrhage in rats via AMPK-dependent mitophagy.
    Exp Neurol. 2022 Mar 24:114055. doi: 10.1016/j.expneurol.2022.114055.
    PubMed     Abstract available


  60. DIETZ V, Knox K, Moore S, Roberts N, et al
    Dorsal horn neuronal sparing predicts the development of at-level mechanical allodynia following cervical spinal cord injury in mice.
    Exp Neurol. 2022;352:114048.
    PubMed     Abstract available


    February 2022
  61. SCHRANK S, Satkunendrarajah K
    Viral tools for mapping and modulating neural networks after spinal cord injury.
    Exp Neurol. 2022;351:113995.
    PubMed     Abstract available


    January 2022
  62. PINHO AG, Cibrao JR, Lima R, Gomes ED, et al
    Immunomodulatory and regenerative effects of the full and fractioned adipose tissue derived stem cells secretome in spinal cord injury.
    Exp Neurol. 2022 Jan 20:113989. doi: 10.1016/j.expneurol.2022.113989.
    PubMed     Abstract available


  63. PAN D, Schellhardt L, Acevedo-Cintron JA, Hunter D, et al
    IL-4 expressing cells are recruited to nerve after injury and promote regeneration.
    Exp Neurol. 2022;347:113909.
    PubMed     Abstract available


    December 2021
  64. METCALFE M, Yee KM, Luo J, Martin-Thompson JH, et al
    Harnessing rAAV-retro for gene manipulations in multiple pathways that are interrupted after spinal cord injury.
    Exp Neurol. 2021 Dec 30:113965. doi: 10.1016/j.expneurol.2021.113965.
    PubMed     Abstract available


  65. DENG L, Ravenscraft B, Xu XM
    Exploring propriospinal neuron-mediated neural circuit plasticity using recombinant viruses after spinal cord injury.
    Exp Neurol. 2021 Dec 22:113962. doi: 10.1016/j.expneurol.2021.113962.
    PubMed     Abstract available


  66. SYDNEY-SMITH JD, Spejo AB, Warren PM, Moon LDF, et al
    Peripherally delivered Adeno-associated viral vectors for spinal cord injury repair.
    Exp Neurol. 2021;348:113945.
    PubMed     Abstract available


  67. CHEN J, Jian J, Wang J, Shen Z, et al
    Low pressure voiding induced by stimulation and 1 kHz post-stimulation block of the pudendal nerves in cats.
    Exp Neurol. 2021;346:113860.
    PubMed     Abstract available


    November 2021
  68. BLANKE EN, Ruiz-Velasco V, Holmes GM
    Spinal cord injury-mediated changes in electrophysiological properties of rat gastric nodose ganglion neurons.
    Exp Neurol. 2021 Nov 16:113927. doi: 10.1016/j.expneurol.2021.113927.
    PubMed     Abstract available


    October 2021
  69. VOSE AK, Welch JF, Nair J, Dale EA, et al
    Therapeutic acute intermittent hypoxia: A translational roadmap for spinal cord injury and neuromuscular disease.
    Exp Neurol. 2021 Oct 9:113891. doi: 10.1016/j.expneurol.2021.113891.
    PubMed     Abstract available


  70. AMO-APARICIO J, Garcia-Garcia J, Puigdomenech M, Francos-Quijorna I, et al
    Inhibition of the NLRP3 inflammasome by OLT1177 induces functional protection and myelin preservation after spinal cord injury.
    Exp Neurol. 2021 Oct 5:113889. doi: 10.1016/j.expneurol.2021.113889.
    PubMed     Abstract available


    August 2021
  71. FAW TD, Lakhani B, Schmalbrock P, Knopp MV, et al
    Eccentric rehabilitation induces white matter plasticity and sensorimotor recovery in chronic spinal cord injury.
    Exp Neurol. 2021 Aug 28:113853. doi: 10.1016/j.expneurol.2021.113853.
    PubMed     Abstract available


  72. VAN STEENBERGEN V, Bareyre FM
    Chemogenetic approaches to unravel circuit wiring and related behavior after spinal cord injury.
    Exp Neurol. 2021;345:113839.
    PubMed     Abstract available


  73. SHIBATA T, Tashiro S, Shinozaki M, Hashimoto S, et al
    Treadmill training based on the overload principle promotes locomotor recovery in a mouse model of chronic spinal cord injury.
    Exp Neurol. 2021 Aug 6:113834. doi: 10.1016/j.expneurol.2021.113834.
    PubMed     Abstract available


  74. CUI C, Wang LF, Huang SB, Zhao P, et al
    Adequate expression of neuropeptide Y is essential for the recovery of zebrafish motor function following spinal cord injury.
    Exp Neurol. 2021 Aug 4:113831. doi: 10.1016/j.expneurol.2021.113831.
    PubMed     Abstract available


    July 2021
  75. SHAHSAVANI N, Alizadeh A, Kataria H, Karimi-Abdolrezaee S, et al
    Availability of neuregulin-1beta1 protects neurons in spinal cord injury and against glutamate toxicity through caspase dependent and independent mechanisms.
    Exp Neurol. 2021 Jul 24:113817. doi: 10.1016/j.expneurol.2021.113817.
    PubMed     Abstract available


  76. GORDON T, Fu SY
    Peripheral nerves preferentially regenerate in intramuscular endoneurial tubes to reinnervate denervated skeletal muscles.
    Exp Neurol. 2021;341:113717.
    PubMed     Abstract available


  77. PADBERG F, Bulubas L, Mizutani-Tiebel Y, Burkhardt G, et al
    The intervention, the patient and the illness - Personalizing non-invasive brain stimulation in psychiatry.
    Exp Neurol. 2021;341:113713.
    PubMed     Abstract available


    June 2021
  78. DIENEL A, Veettil RA, Matsumura K, Choi HA, et al
    Agonism of the alpha7-acetylcholine receptor/PI3K/Akt pathway promotes neuronal survival after subarachnoid hemorrhage in mice.
    Exp Neurol. 2021 Jun 25:113792. doi: 10.1016/j.expneurol.2021.113792.
    PubMed     Abstract available


  79. ROY A, Pathak Z, Kumar H
    Strategies to neutralize RhoA/ROCK pathway after spinal cord injury.
    Exp Neurol. 2021 Jun 21:113794. doi: 10.1016/j.expneurol.2021.113794.
    PubMed     Abstract available


    May 2021
  80. BROWN EV, Falnikar A, Heinsinger N, Cheng L, et al
    Cervical spinal cord injury-induced neuropathic pain in male mice is associated with a persistent pro-inflammatory macrophage/microglial response in the superficial dorsal horn.
    Exp Neurol. 2021 May 12:113757. doi: 10.1016/j.expneurol.2021.113757.
    PubMed     Abstract available


  81. ZHOU K, Enkhjargal B, Mo J, Zhang T, et al
    Dihydrolipoic acid enhances autophagy and alleviates neurological deficits after subarachnoid hemorrhage in rats.
    Exp Neurol. 2021;342:113752.
    PubMed     Abstract available


  82. GONZALEZ-ROTHI EJ, Lee KZ
    Intermittent hypoxia and respiratory recovery in pre-clinical rodent models of incomplete cervical spinal cord injury.
    Exp Neurol. 2021 May 8:113751. doi: 10.1016/j.expneurol.2021.113751.
    PubMed     Abstract available


  83. VASUDEVAN D, Liu YC, Barrios JP, Wheeler MK, et al
    Regenerated interneurons integrate into locomotor circuitry following spinal cord injury.
    Exp Neurol. 2021 May 3:113737. doi: 10.1016/j.expneurol.2021.113737.
    PubMed     Abstract available


  84. SUTOR T, Cavka K, Vose AK, Welch JF, et al
    Single-session effects of acute intermittent hypoxia on breathing function after human spinal cord injury.
    Exp Neurol. 2021 May 2:113735. doi: 10.1016/j.expneurol.2021.113735.
    PubMed     Abstract available


  85. SARHANE KA, Slavin BR, Hricz N, Malapati H, et al
    Defining the relative impact of muscle versus Schwann cell denervation on functional recovery after delayed nerve repair.
    Exp Neurol. 2021;339:113650.
    PubMed     Abstract available


    April 2021
  86. GOODUS MT, Carson KE, Sauerbeck AD, Dey P, et al
    Liver inflammation at the time of spinal cord injury enhances intraspinal pathology, liver injury, metabolic syndrome and locomotor deficits.
    Exp Neurol. 2021;342:113725.
    PubMed     Abstract available


  87. SANDHU MS, Perez MA, Oudega M, Mitchell GS, et al
    Efficacy and time course of acute intermittent hypoxia effects in the upper extremities of people with cervical spinal cord injury.
    Exp Neurol. 2021 Apr 28:113722. doi: 10.1016/j.expneurol.2021.113722.
    PubMed     Abstract available


  88. SIMMONS EC, Scholpa NE, Schnellmann RG
    FDA-approved 5-HT1F receptor agonist lasmiditan induces mitochondrial biogenesis and enhances locomotor and blood-spinal cord barrier recovery after spinal cord injury.
    Exp Neurol. 2021 Apr 10:113720. doi: 10.1016/j.expneurol.2021.113720.
    PubMed     Abstract available


    March 2021
  89. CHIO JCT, Xu KJ, Popovich P, David S, et al
    Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives.
    Exp Neurol. 2021;341:113704.
    PubMed     Abstract available


  90. SUN XG, Zhang MM, Liu SY, Chu XH, et al
    Role of TREM-1 in the development of early brain injury after subarachnoid hemorrhage.
    Exp Neurol. 2021 Mar 13:113692. doi: 10.1016/j.expneurol.2021.113692.
    PubMed     Abstract available


  91. ZHANG T, Huang L, Peng J, Zhang JH, et al
    LJ529 attenuates mast cell-related inflammation via A3R-PKCepsilon-ALDH2 pathway after subarachnoid hemorrhage in rats.
    Exp Neurol. 2021;340:113686.
    PubMed     Abstract available


  92. RU X, Qu J, Li Q, Zhou J, et al
    MiR-706 alleviates white matter injury via downregulating PKCalpha/MST1/NF-kappaB pathway after subarachnoid hemorrhage in mice.
    Exp Neurol. 2021 Mar 10:113688. doi: 10.1016/j.expneurol.2021.113688.
    PubMed     Abstract available


  93. ITO S, Ozaki T, Morozumi M, Imagama S, et al
    Enoxaparin promotes functional recovery after spinal cord injury by antagonizing PTPRsigma.
    Exp Neurol. 2021 Mar 1:113679. doi: 10.1016/j.expneurol.2021.113679.
    PubMed     Abstract available


    February 2021
  94. ARNOLD BM, Toosi BM, Caine S, Mitchell GS, et al
    Prolonged acute intermittent hypoxia improves forelimb reach-to-grasp function in a rat model of chronic cervical spinal cord injury.
    Exp Neurol. 2021 Feb 27:113672. doi: 10.1016/j.expneurol.2021.113672.
    PubMed     Abstract available


  95. TAN AQ, Sohn WJ, Naidu A, Trumbower RD, et al
    Daily acute intermittent hypoxia combined with walking practice enhances walking performance but not intralimb motor coordination in persons with chronic incomplete spinal cord injury.
    Exp Neurol. 2021 Feb 26:113669. doi: 10.1016/j.expneurol.2021.113669.
    PubMed     Abstract available


  96. PRAGER J, Ito D, Carwardine DR, Jiju P, et al
    Delivery of chondroitinase by canine mucosal olfactory ensheathing cells alongside rehabilitation enhances recovery after spinal cord injury.
    Exp Neurol. 2021 Feb 26:113660. doi: 10.1016/j.expneurol.2021.113660.
    PubMed     Abstract available


  97. GUO W, Shapiro K, Wang Z, Armann K, et al
    Restoring both continence and micturition after chronic spinal cord injury by pudendal neuromodulation.
    Exp Neurol. 2021 Feb 24:113658. doi: 10.1016/j.expneurol.2021.113658.
    PubMed     Abstract available


    January 2021
  98. PIZZOLATO C, Gunduz MA, Palipana D, Wu J, et al
    Non-Invasive Approaches to Functional Recovery after Spinal Cord Injury: Therapeutic Targets and Multimodal Device Interventions.
    Exp Neurol. 2021 Jan 13:113612. doi: 10.1016/j.expneurol.2021.113612.
    PubMed     Abstract available


  99. BILCHAK JN, Yeakle K, Caron G, Malloy D, et al
    Enhancing KCC2 activity decreases hyperreflexia and spasticity after chronic spinal cord injury.
    Exp Neurol. 2021;338:113605.
    PubMed     Abstract available


  100. STEWART AN, McFarlane KE, Vekaria HJ, Bailey WM, et al
    Mitochondria exert age-divergent effects on recovery from spinal cord injury.
    Exp Neurol. 2021;337:113597.
    PubMed     Abstract available


  101. SIEVERDING K, Ulmer J, Bruno C, Satoh T, et al
    Hemizygous deletion of Tbk1 worsens neuromuscular junction pathology in TDP-43(G298S) transgenic mice.
    Exp Neurol. 2021;335:113496.
    PubMed     Abstract available


    December 2020
  102. ZHANG H, Xue W, Xue X, Fan Y, et al
    Spatiotemporal dynamic changes, proliferation, and differentiation characteristics of Sox9-positive cells after severe complete transection spinal cord injury.
    Exp Neurol. 2020;337:113556.
    PubMed     Abstract available


  103. FENRICH KK, Hallworth B, Vavrek R, Raposo P, et al
    Self-directed rehabilitation training intensity thresholds for efficient recovery of skilled forelimb function in rats with cervical spinal cord injury.
    Exp Neurol. 2020 Dec 5:113543. doi: 10.1016/j.expneurol.2020.113543.
    PubMed     Abstract available


  104. LIU Y, Zhong H, Bussan EL, Pang IH, et al
    Early phosphoproteomic changes in the retina following optic nerve crush.
    Exp Neurol. 2020;334:113481.
    PubMed     Abstract available


  105. BALOG BM, Askew T, Lin DL, Kuang M, et al
    The pudendal nerve motor branch regenerates via a brain derived neurotrophic factor mediated mechanism.
    Exp Neurol. 2020;334:113438.
    PubMed     Abstract available


    November 2020
  106. SANCHEZ-VENTURA J, Gimenez-Llort L, Penas C, Udina E, et al
    Voluntary wheel running preserves lumbar perineuronal nets, enhances motor functions and prevents hyperreflexia after spinal cord injury.
    Exp Neurol. 2020 Nov 29:113533. doi: 10.1016/j.expneurol.2020.113533.
    PubMed     Abstract available


  107. ZEYU ZHANG, Yuanjian Fang, Cameron Lenahan, Sheng Chen, et al
    The role of immune inflammation in aneurysmal subarachnoid hemorrhage.
    Exp Neurol. 2020;336:113535.
    PubMed     Abstract available


  108. GAO Y, Tao T, Wu D, Zhuang Z, et al
    MFG-E8 attenuates inflammation in subarachnoid hemorrhage by driving microglial M2 polarization.
    Exp Neurol. 2020 Nov 24:113532. doi: 10.1016/j.expneurol.2020.113532.
    PubMed     Abstract available


  109. PERIM RR, Kubilis PS, Seven YB, Mitchell GS, et al
    Hypoxia-induced hypotension elicits adenosine-dependent phrenic long-term facilitation after carotid denervation.
    Exp Neurol. 2020;333:113429.
    PubMed     Abstract available


    September 2020
  110. VELLIMANA AK, Aum DJ, Diwan D, Clarke J, et al
    SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage.
    Exp Neurol. 2020 Sep 30:113484. doi: 10.1016/j.expneurol.2020.113484.
    PubMed     Abstract available


  111. HOWARTH HM, Orozco E, Lovering RM, Shah SB, et al
    A comparative assessment of lengthening followed by end-to-end repair and isograft repair of chronically injured peripheral nerves.
    Exp Neurol. 2020;331:113328.
    PubMed     Abstract available


    July 2020
  112. ALEEM M, Goswami N, Kumar M, Manda K, et al
    Low-pressure fluid percussion minimally adds to the sham craniectomy-induced neurobehavioral changes: Implication for experimental traumatic brain injury model.
    Exp Neurol. 2020;329:113290.
    PubMed     Abstract available


    March 2020
  113. SENGER JB, Chan KM, Webber CA
    Conditioning electrical stimulation is superior to postoperative electrical stimulation, resulting in enhanced nerve regeneration and functional recovery.
    Exp Neurol. 2020;325:113147.
    PubMed     Abstract available


Thank you for your interest in scientific medicine.


AMEDEO Neurosurgery is free of charge.