QTQTN motif upstream of the furin-cleavage site plays a key role in SARS-CoV-2 infection and pathogenesis

Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2205690119. doi: 10.1073/pnas.2205690119. Epub 2022 Jul 26.

Abstract

The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here, we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated, and disruption of its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site-the FCS, loop length, and glycosylation-are required for efficient SARS-CoV-2 replication and pathogenesis.

Keywords: QTQTN; SARS-CoV-2; furin cleavage site; glycosylation; spike.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Amino Acid Motifs / genetics
  • Animals
  • COVID-19* / virology
  • Chlorocebus aethiops
  • Furin* / chemistry
  • Humans
  • Proteolysis*
  • SARS-CoV-2* / genetics
  • SARS-CoV-2* / physiology
  • Sequence Deletion
  • Spike Glycoprotein, Coronavirus* / chemistry
  • Spike Glycoprotein, Coronavirus* / genetics
  • Vero Cells
  • Virus Replication / genetics

Substances

  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2
  • Furin