Simplified Transfer Learning for Chest Radiography Models Using Less Data

Radiology. 2022 Nov;305(2):454-465. doi: 10.1148/radiol.212482. Epub 2022 Jul 19.

Abstract

Background Developing deep learning models for radiology requires large data sets and substantial computational resources. Data set size limitations can be further exacerbated by distribution shifts, such as rapid changes in patient populations and standard of care during the COVID-19 pandemic. A common partial mitigation is transfer learning by pretraining a "generic network" on a large nonmedical data set and then fine-tuning on a task-specific radiology data set. Purpose To reduce data set size requirements for chest radiography deep learning models by using an advanced machine learning approach (supervised contrastive [SupCon] learning) to generate chest radiography networks. Materials and Methods SupCon helped generate chest radiography networks from 821 544 chest radiographs from India and the United States. The chest radiography networks were used as a starting point for further machine learning model development for 10 prediction tasks (eg, airspace opacity, fracture, tuberculosis, and COVID-19 outcomes) by using five data sets comprising 684 955 chest radiographs from India, the United States, and China. Three model development setups were tested (linear classifier, nonlinear classifier, and fine-tuning the full network) with different data set sizes from eight to 85. Results Across a majority of tasks, compared with transfer learning from a nonmedical data set, SupCon reduced label requirements up to 688-fold and improved the area under the receiver operating characteristic curve (AUC) at matching data set sizes. At the extreme low-data regimen, training small nonlinear models by using only 45 chest radiographs yielded an AUC of 0.95 (noninferior to radiologist performance) in classifying microbiology-confirmed tuberculosis in external validation. At a more moderate data regimen, training small nonlinear models by using only 528 chest radiographs yielded an AUC of 0.75 in predicting severe COVID-19 outcomes. Conclusion Supervised contrastive learning enabled performance comparable to state-of-the-art deep learning models in multiple clinical tasks by using as few as 45 images and is a promising method for predictive modeling with use of small data sets and for predicting outcomes in shifting patient populations. © RSNA, 2022 Online supplemental material is available for this article.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19* / diagnostic imaging
  • Deep Learning*
  • Humans
  • Machine Learning
  • Pandemics
  • Radiographic Image Interpretation, Computer-Assisted / methods
  • Radiography
  • Radiography, Thoracic / methods
  • Retrospective Studies